Let $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ then the value of $f(1) + f(2)$, is -

  • A

    $-\pi$

  • B

    $0$

  • C

    $\pi$

  • D

    $2\pi$

Similar Questions

Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which

$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is

  • [JEE MAIN 2022]

If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]

Let $\mathrm{f}(\mathrm{x})$ be a polynomial of degree $3$ such that $\mathrm{f}(\mathrm{k})=-\frac{2}{\mathrm{k}}$ for $\mathrm{k}=2,3,4,5 .$ Then the value of $52-10 \mathrm{f}(10)$ is equal to :

  • [JEE MAIN 2021]

If $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, then $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ is equal to

  • [JEE MAIN 2019]

Let $S=\{1,2,3,4,5,6,7\} .$ Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in S$ and $m . n \in S$ is equal to $......$

  • [JEE MAIN 2021]